If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=H^2+4H-45
We move all terms to the left:
(H)-(H^2+4H-45)=0
We get rid of parentheses
-H^2+H-4H+45=0
We add all the numbers together, and all the variables
-1H^2-3H+45=0
a = -1; b = -3; c = +45;
Δ = b2-4ac
Δ = -32-4·(-1)·45
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{21}}{2*-1}=\frac{3-3\sqrt{21}}{-2} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{21}}{2*-1}=\frac{3+3\sqrt{21}}{-2} $
| 5(s+9)+4=9s-12 | | 3q^2-30q+200=0 | | 7p+7(-7+6p)=196 | | P(6p-1)=2 | | 15x+5-(10x+3)=0 | | 5(2x-8)+15=- | | C-0.45c=88 | | 1=(t^2)-8t+16 | | 12x6=(10x6)+(0x6) | | 15x+5=10x+3 | | 55/28=612x | | (x^2-3x+5)+(2x^2+11x-1)=0 | | 2x+(7x2)=8 | | 6/15x=8 | | v-5+6=-7v+6 | | y+6y+9=5 | | Y=4/(9x) | | 7x-2=3x+50 | | x-0.05x=3040 | | 5x+2x^-1=-11 | | P(x)=x²-5x | | 1.055x=8 | | P(X)=X2-5x | | 5(x-2)+3(x+1)=45 | | 1/4x-1/8=7/8+x | | 3/4x-5=3/2x-11 | | 120=x(3x+2) | | 5^(2^(3x-2))=3125^(25^(x+7)) | | 82=(x+2)+(2x+5)+2(2x-1) | | ((3x)/2)+(2/5)=((7x)/10)-(3/4) | | 2x+6=-x-18 | | 4z+1=2z+1 |